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In this paper the problem of designing a robust controller with given structure for a plant describing a drag-free
satellite is addressed. From recent experiences in drag-free control design we first derive an uncertain plant set
representative of many drag-free missions with nonspherical test masses. The design plant is uncertain and a
performance requirement is imposed on the absolute acceleration of the test mass along a measurement axis. The
v-gap metric is first used to derive a simplified uncertain design plant. Then the main performance requirement is
broken down into requirements on the uncertain closed loop behavior of the simplified system. The fulfillment of this
new set of requirements guarantees robust achievement of the overall system goal. Then optimal single-input-single-
output controllers are designed that robustly achieve the desired level of performance. The method proposed allows
one to properly account for the uncertainties in the system retaining the decentralized structure of the controller

suggested by the peculiar features of the design plant.

1. Introduction

N RECENT years many space missions have demonstrated that

high performance in space in terms of spacecraft positioning and
attitude acquisition and maintenance can be achieved by the current
technology. On the basis of these achievements space has recently
been considered for high precision physics experiments such as the
ones involving measurements of gravitational waves and relativistic
effects (LISA Pathfinder [1], LISA [2], Microscope [3], STEP [4]).

In all these missions the drag-free satellite concept [5] plays a key
role. The drag-free satellite contains a cavity in which a test mass (or
proof mass) is let free to fly. The test mass is shielded by the
surrounding spacecraft against the disturbances acting on the surface
so that its motion is influenced only by the gravitational force and by
the small gravitational and electrostatic interaction existing with the
spacecraft. Both these contributions show spatial dependence so that
a stiffnesslike interaction exists between the proof mass and the
spacecraft [1]. The accuracy level of the free fall trajectory followed
by the test mass depends therefore on the capability of the control
system to keep the test mass at the center of the cavity. The free fall
requirements are usually specified as acceleration spectral noise
densities along a specific axis that is the sensitive axis of the
experiment. The control is actuated with high precision continuous
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thrusters so that the spacecraft is forced to chase the test mass in its
purely gravitational motion at least along the sensitive axis.
However, for nonspherical proof masses or if more than one test mass
is present onboard, an electrostatic suspension actuator must be
included to control the relative attitude of the test mass with respect to
the spacecraft.

The requirements imposed by the scientific goal imply
challenging design tasks to be achieved both at a system level and
from a control synthesis point of view. From the system design point
of view, the main objective is to reduce as much as possible the
dynamic couplings between the spacecraft and the test mass. On the
other hand, the control synthesis is aimed at stabilizing the relative
motion of the test mass with respect to the spacecraft and to provide
the required level of disturbance rejection. In this paper only the
controller synthesis problem is addressed.

In many past investigations [1,6-9] it is assumed that the overall
system is designed so that the couplings among the different degrees
of freedom are highly reduced. This allows one to tackle the control
design procedure as a synthesis of a set of single-input/single-output
(SISO) controllers completely ignoring the coupling effects. Then,
simple proportional-integral-derivative design methods [6], an
optimization approach based on the definition of penalty functions
[7,10] and H,, synthesis techniques [1,9], have been proposed as
methods to synthesize the SISO controllers. In all these cases no
structured uncertainty is considered in the design plant so that the
achievement of the top level performance requirement of the whole
system in the presence of perturbations must be checked a posteriori.

In this paper the problem of designing a decentralized robust
controller for a plant describing a drag-free satellite is addressed in a
more systematic way. To better illustrate the controller design
technique, a 2-degree-of-freedom design plant representative of the
most modern drag-free satellites [10,11] is first defined. Then a two-
stage design technique is proposed. In the first phase the structure of
the plant and the measurement relation are exploited to derive bounds
on the individual closed loop responses, that, when satisfied,
guarantee the robust performance of the overall system. In the second
phase a recently developed control design technique [12] based on
the mixed structured singular value is used to synthesize SISO
controllers that robustly achieve the performance specified by the
individual bounds. The proposed synthesis technique automatically
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performs an optimized tradeoff between achievable performance and
limitations due to uncertainty or plant dynamics for the SISO plants
verifying if the performance requirements derived in the previous
step may be achieved. Finally, to validate in a more realistic scenario
the results of this paper, controllers derived with the technique
developed in this work are implemented and tested in a nonlinear
simulation scenario.

The benefit associated with this methodology is twofold. From one
side it allows for the direct design of a decentralized controller that
automatically achieves robust performance without requiring any
a posteriori analysis. On the other hand, for a given design plant
model with an associated level of uncertainty, it helps to assess if the
overall system goal is achievable by independent controller designs.
As a final remark, note that the discretization of the designed control
law is not directly addressed in the present paper. However, the
method presented in this paper indeed yields controllers that are
suitable for a digital implementation and it can thus be used in con-
nection with state of the art controller discretization techniques. The
use of discretization techniques for the digital implementation of
drag-free controllers designed with frequency shaping methods is
presented, for example, in [7]. A completely different approach is
described in [13], where the problem of designing a drag-free con-
troller is tackled directly in the discrete time domain. A discussion
about the advantages and the drawbacks of controller discretization
versus direct design of digital controllers can be found in [14].

The notation used throughout the paper is introduced as follows:
Let R, denote the nonnegative real numbers, C denote the closed
right half complex plane, and C"™*" denote complex matrices of
dimension m x n. The maximum singular value of a matrix A €
C™ is denoted by G(A). AT (respectively, A*) is the transpose
(respectively, complex conjugate transpose) of A € C™*" and ||A||¢
denotes the Frobenius norm of the matrix A. The k x k identity
matrix and zero matrix are denoted by I, and O,, respectively,
whereas E; denotes a k x k matrix fully padded with ones. ® denotes
the Kronecker product. A real rational matrix function I'(s) of a
complex variable s is such that I'(s) € RH,, if it is bounded and
analytic in the open complex right half-plane. The adjoint system of
I'(s) is defined by I'~(s) = I'(—s)”. The | - ||, norm of a m x n
matrix function I'(s) is defined by |||, = sup,, 6(I'(jw)). Finally,
diagl | (A;) with A; € C">m j=1,...,N denotes the Y ,m; x
>".n; block diagonal complex matrix composed of A;,i =1,..., N.

II. Plant Model

In Fig. 1, the drag-free satellite layout is sketched and the
reference frames used for the definition of the equations of motion
are displayed. In this figure ¥; denotes the geocentric reference
frame, Xgc the spacecraft body reference frame, and Xy is the
reference frame attached to the test mass. The satellite can be
divided in two different subsystems, the spacecraft and the experi-
ment on board. The experiment includes a cavity (or housing) that
contains a partially free flying proof mass. Position and attitude of
the test mass with respect to the spacecraft are measured by means
of an electrostatic sensor. The main control objective is to minimize
the acceleration noise density on the test mass along some sensitive

Fig. 1 Schematic view of drag-free satellite.

axis. To this end, in the direction of the sensitive axis high precision
field emission electric propulsion (FEEP) thrusters are used to
control the position of the satellite such that the proof mass remains
in the center of the cavity. Moreover, to ensure a proper commu-
nication link with the ground station or a proper thermal condi-
tioning, a requirement is usually imposed on the absolute attitude of
the satellite. This control task is achieved feeding back the mea-
surement from the star tracker by means of the FEEP thrusters. A
suspension actuation system is then required to align the test mass
attitude to the one of the satellite [9].

In this paper the attitude of the satellite is controlled with an
independent feedback loop with respect to the test mass relative
position. The remainder of this paper is focused on the derivation of
the controllers for the test mass relative position and attitude. The
design of the attitude control for the spacecraft is therefore assumed
and is not included in the present paper.

A. System Dynamics

In this section the linearized equations describing the motion of
Y With respect to Xy are derived. In particular, the simplified
model in this paper considers only the displacement along the
spacecraft x body axis and the rotation ¢ around the spacecraft z body
axis. However, the control design technique developed here can be
easily applied to more complex dynamic models as demonstrated in
Sec. VI and in [15]. The set of linearized equations describing the
relative motion of the test mass with respect to the spacecraft is [10]

‘.I.:M;l[fe +fexp +fh+MuéSC] (1)

where g = [x, ¢]", M, = diag(mry, Iv) represents the proof mass
generalized mass matrix (mass plus inertia), M, is the sensitivity of
the test mass dynamics to the spacecraft linear (¥gc) and angular
(&SC) acceleration, expressed in the vector ggc. The generalized
forces (forces and torques) acting on the test mass are divided into
three contributions f,, fey,, and f,. A brief description of the three
terms is presented as follows:

1) f, are the external generalized forces acting on the test mass:
this contribution is mainly due to the interplanetary gravitational and
magnetic fields acting directly on the test mass.

2) fexp are the generalized forces acting between test mass and the
experiment: this contribution is mainly due to gravitational,
electrostatic, and magnetic interactions between the spacecraft and
the test mass.

3) f, are the generalized forces acting between electrode housing
and the test mass: these are mainly electrostatic forces due to the
suspension control loop.

Both f.,, and f, show spatial dependence so that it is convenient
to represent them by means of a series expansion:

Sn =" + fsus + Knq 2

fexp = fexpu + Kequ (3)

where fgyg are the electrostatic suspension generalized forces acting
on the test mass and Ky, = 0fcq/0dq and K, := 0f,/dq are the
corresponding stiffness matrices. Moreover, a direct cross talk is
included in the electrostatic actuation. The relation between the
commanded suspension forces Fgys and the real ones fgyg can be
expressed by

fsus = (I + Hig)Fsus

where H g is the actuation cross-talk matrix.
The linearized equation of motion of the spacecraft is

Gsc =Mglfsc + fas + for] (C))
where Mgc is the spacecraft generalized mass matrix, fgg is

the external disturbance acting on the spacecraft, and fsc is the
total generalized force between the spacecraft and the experiment.
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Assuming that the satellite is placed in a low disturbance
environment, for example, in the Earth—sun Lagrangian point [7], the
main contributions to the disturbance force acting on the satellite are
thruster noise and solar radiation drag. fpr contains the force and
torque acting on the spacecraft due to the drag-free control. This
action is provided by means of FEEP thrusters, modeled here as a
first-order system with a characteristic time constant of 0.1303 s
(corresponding to approximately 0.3 s rise time). The selected time
constant takes into account the delays introduced by the electronic
devices driving the thrusting actuators [16,17]. In this paper the
FEEP thrusters are considered as a baseline actuator system because
they have been identified as a key technology for future drag-free
missions [17]. However, other technologies such as colloidal
micronewton thrusters [18] or ion thrusters [13] are currently taken
into consideration in the development of drag-free missions.

In a typical configuration the mass of the spacecraft is
approximately 2 orders of magnitude larger than the one of the test
mass. Therefore, the force balance on the spacecraft is dominated by
the thrusters effect and the solar radiation pressure so that the term
fsc in Eq. (4) can be neglected. Substituting Egs. (2) and (3) into
Eq. (1) and neglecting fsc in Eq. (4) yields the following expression:

G=M;"{Kq + fsus + frm + M M) (faise + for)} (&)

where K = K, + K, and fry = fi, + fexp, + fo 18 the dis-
turbance force directly acting on the proof mass. The numerical
values of the physical characteristics of the system are displayed in
Table 1 and are consistent with the ones in [19,20] describing a
similar system. Note that the stiffness values displayed in Table 1 will
result in an unstable behavior of the design plant.

To translate the science objective into controller requirements the
measurement equation must be derived. In the example considered in
this paper, a performance requirement is imposed on the residual
absolute acceleration along the x axis. This can be expressed as a
function of the noises on the coordinates x and ¢ and of the
suspension actuation and disturbance forces acting upon the test
mass as

y = mylfru, + hisFsus, + Kux + K¢l ©)

Finally, the controller sampling rate is set to 10 Hz whereas it is
assumed that the typical experiment time during the missionis 10° s.
These values are again consistent with those used for missions
currently under development (see, for example, [7,10]).

B. System Disturbances

The input disturbances acting on the test mass are mainly due to
spacecraft/test mass gravitational and electrostatic interactions. In
this work the total stray force acting on the test mass is assumed to be
dominated by electrostatic contribution. The weighting functions
used in this paper to model the frequency content of fry are
consistent with the ones in [20].

On the other hand, the disturbances acting on the spacecraft are
mainly due to the noise associated with the FEEP thrusters and the
solar radiation pressure. According to the work in [20], they have
been modeled as zero-mean Gaussian white noise shaped by a low
pass filter. The filters used to describe the different input disturbances

Table 1 Numerical data of the drag-free satellite

Parameter Numerical value

nsc 500 kg

Isc 500 kg - m?

My 1 kg

Ity 6x 1074 kg- m?

ko= | Ko Ky 2x106 X 0003 %107 X
Ko Koy 0.006 x 10°° N 0.004 x 10° X

(=]

. hys 0 0541
H’S'_[o o] [0 0"

10 ——— FEEP Contribution to fdis‘ on x
— — — FEEP Contribution to f0|isl on ¢

fTM on x

10° 0 fTM on o
Solar Contribution to fdist on x
— - —- Solar Contribution to fdist onod
10° 1

Magnitude

107 107 107 1072 10
Frequency (Hz)

Fig. 2 Input disturbances weights. Units for disturbance on x are

N//(Hz), and on ¢ are N - m/,/(Hz).

are displayed in Fig. 2. The solar noise power spectral density (PSD)
has been derived taking into account the measurements performed by
the VIRGO (Variability of solar Irradiance and Gravity Oscillations)
experiment onboard the SOHO (Solar and Heliospheric
Observatory) mission (see again [20]). The suspension actuation
noise weighting function has been defined assuming a torque
resolution of 1.52 x 107> N- m (corresponding to a maximum
electrostatic force [21] of 2.5 x 10~ N and considering a 16 bits
converter between the controller and the suspension actuator [22]).
Similarly, the FEEP actuation noise PSD takes into account the
equivalent quantization noise associated to thrusters with 0.1 uN
thrust resolution [17]. Moreover, the external disturbance due to the
FEEP thruster acting on the ¢ axis is assumed 10* times smaller with
respect to the one acting on the x axis. This allows one to take into
account the disturbance reduction behavior of the attitude controller
of the spacecraft, not included in the present model. However, this
assumption is removed in the simulation performed with the nonlinear
simulator givenin Sec. VI. As a final remark, note that the noise due to
the FEEP thrusters and the solar radiation drag are the dominant
contributions in the frequency range between 10~ and 10 Hz on both
the x and on the ¢ axes. This justifies the assumption made by
neglecting fc in the derivation of Eq. (5).

10°° T T T
7777777 N ——— Readout Noise on x (nx)

- — — Readout Noise on ¢ (nm) 1

107}

Magnitude
5LI

107 ‘ ‘ .
107 107 107 107 10°
Frequency (Hz)
Fig. 3 Readout disturbances weights. Units for disturbance on x are

m/,/(Hz), and on ¢ are rad/,/(Hz).
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The noise associated with the measurement process is also
modeled as zero-mean Gaussian white noise preshaped with a low
pass filter. The magnitude plots for the readout noise filters are
consistent with the ones in [20] and are shown in Fig. 3.

C. Uncertainty Model

The design of a robustly performing controller first requires the
definition of a mathematical model with associated uncertainty
models. The main source of uncertainty for the scientific drag-free
missions is the instrument itself. Even small imperfections in the
design of the instrument may cause nonnegligible perturbations on
the test mass motion resulting in the loss of performance of the whole
system [9]. The force interaction between the spacecraft and the test
mass is modeled as a stiffness coupling defined by means of the
matrix K and by the electrostatic cross coupling /5. These inter-
actions are very difficult to model on ground and therefore on-orbit
calibration experiments, that shall allow one to estimate these
parameters before the spacecraft starts collecting science measure-
ments, are currently under investigation [21]. Therefore, an uncer-
tainty of £50% with respect to the nominal value listed in Table 1 is
considered on each entry of the stiffness matrix and on the electro-
static cross coupling h;g. A reference for the selected uncertainty
values can be found, for example, in [7,23].

The FEEP thrusters are the second source of uncertainty in the
system. This technology is still under development and therefore a
certain level of uncertainty must be considered in the dynamical
model representing the actuator. Following the results in [16] the
FEEP thruster is modeled here as a first-order system, that is,

KFEEP

Preer =777

An uncertainty of £5% on the scale factor kgggp takes into account
the undetermined static behavior of the thruster. On the other hand,
measurements of the real dynamic behavior of the system have
shown that the time constant 7 depends on the current thrust value and
on the amount of thrust variation. For this reason an uncertainty of
+50% is considered on the FEEP time constant.

The block diagram representing the system described in this
section is shown in Fig. 4a where the following definitions hold:

K K
FXX SZ - Iﬂ "lfﬂj
= ™ ™
Cyy Kou 2 _ Ky
mpm

r,1. 1
Top | det(s*I — M;'K)

and where dgc and dpy denote the exogenous disturbance per unit
mass/inertia acting, respectively, on the spacecraft and the test mass
whereas 1, and 1, denote the sensor readout noise on the x and ¢
axes, respectively. The FEEP model is included in the plant and
the different noise sources are considered as they naturally appear
in the loop. Two control blocks are included in this scheme: one
commanding the FEEP actuator (Kpg) and one commanding the
electrostatic actuation (Ksys). Uncertainties appear in the plant
describing the drag-free satellite dynamics as well as in the FEEP
model.

1, %
1 Lp Ko 0

d,
— r, I Frl'[;l:l"_gg
myy, 0 K

P ‘—]?« 0 1 SUS

a) Coupled MIMO block diagram of the drag-
free satellite system

T ) Cous
J
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III. Derivation of Specifications for

Decentralized Control Design
In this work the control design will be considered successful if the
residual absolute acceleration acting on the test mass along the x
direction is kept below

SyY*<2x 10—14[1 + ( / )

Tm 1
3mHz/) |s?®Hz
in the measurement bandwidth (MBW)

1 mHz < f <30 mHz

in the presence of uncertainty as defined in the previous section. This
requirement represents the technological goal of missions currently
under development [1] and therefore it will be taken here as reference.
Moreover, adecentralized controller structure is assumed in this work
where the test mass x position is fed back by means of the thruster
actuation and the attitude error is fed back by means of the suspension
actuation. This situation is encountered when the requirement of
Eq. (7) must be satisfied together with a requirement on the orien-
tation of the spacecraft. Being the main science objective to reduce
the residual action on the test mass along the x direction, the choice
to control the test mass x position with the thruster is highly recom-
mended. The constraint imposed on the controller structure does not
allow, in principle, the application of the classical p-synthesis
technique (D — K iteration) to the multi-input/multi-output (MIMO)
system. An attractive alternative solution is to break down the nearly
diagonal uncertain plant into two different SISO plants neglecting in
the definition of the uncertain plant set the off-diagonal elements of
the stiffness matrix and h;5. However, by considering the stiffness
and the cross-coupling matrices as diagonal we are, in fact, doing an
approximation of the set of uncertain design plants I". To get insight
about the level of approximation introduced, we measure the distance
between the original uncertain plant set I" and the approximated one,
denoted here by I';, exploiting the v-gap metric [24]. The v-gap
metric has been introduced to define a notion of distance in the space
of possibly unstable linear time invariant (LTI) systems. In particular,
the v gap between two different LTI systems not affected by uncer-
tainty provides an indication of how close the responses of the two
systems are under the same feedback. If the v gap between two
systems is small, then itis reasonable to expect that any controller that
will work well in terms of robust performance for one plant will work
well also for the other. The v-gap metric has been considered in this
work to first introduce the definition of approximation to a given
accuracy of an uncertain plant set.

Definition 1: Let FandT ', be any perturbed plant belonging to the
uncertain plant sets I'and I';, respectively, and let §, € [0, 1]. Then ',
is said to be an approximation of I" of accuracy §, if the following two
conditions hold:

vIel 3T,eT, suchthatd, (I,T,) <8, @®)

1—.I)I‘

Kpp “T’—

b) Decoupled MIMO block diagram of
the drag-free satellite system

Fig. 4 Multi-input/multi-output system block diagram representation.
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VvI,el, 3ITeTl suchthat s, (I,T,) <4, ©)

Observe that, if I'; C T, then Eq. (8) = Eq. (9). The conditions in
Eqgs. (8) and (9) are verified if and only if the following holds:

sup inf §,(I',T,;) <6, (10)
Fer Tacla
sup inf 8,(I, T)) <6, (11)
f'derd T'ell

In this work the minimum §, satisfying the inequalities in Eqs. (10)
and (11) is computed by performing a direct search over the
discretized space of uncertain parameters.

Moreover, to separately assess the importance of the different
parameters, the approximation introduced by neglecting the off-
diagonal elements of the stiffness matrix and /,;5 has been measured
performing two different analyses, whose results are shown in
Table 2. From this table it is possible to conclude that, with the current
model, the off-diagonal elements of the stiffness matrix can be
neglected, whereas the electrostatic actuation cross coupling cannot.
Note that considering the interpretation of the v-gap metric in
frequency domain [24], it is also possible to define a frequency
dependent distance measure &,(w) that may also allow identification
of the frequency regions where a given uncertainty dominates.
However, such a detailed analysis is not necessary in the simple
example considered in this work and therefore is not included here
for the sake of conciseness.

The resulting simplified plant is therefore the one shown in Fig. 4b
where the following definitions hold:

1 1
ITpp=——"7—F7—T, Tgys=5——7-—7-—
br 57— (K, /moy) FEEP Sus s*— (K¢¢/1TM)

Because in the current design plant the /;¢ parameter is uncertain, it is
not possible to cancel out the undesired electrostatic force on the test
mass by taking into account /%,y in the definition of the suspension
control law. However, even assuming a perfect knowledge of /g, the
inversion of the direct cross-coupling matrix in the definition of the
control law is not always desirable because it requires the application
of a direct force on the test mass along the measurement axis. This
may lead to an increase in the stiffness coupling between the space-
craft and the test mass along the x axis resulting in more stringent
requirements on the test mass’s jitter. For these reasons the electro-
static cross coupling is treated here as an additional input disturbance
to be rejected by the drag-free loop. Moreover, the resulting system is
diagonal dominant. Therefore, a decentralized controller that stabi-
lizes the diagonal plant stabilizes the nondiagonal plant as well. If the
controller task is only to stabilize the system, the cross-coupling term
can be neglected. However, /;g together with the off-diagonal ele-
ments of K appear also in the measurement equation. Therefore, an
uncertainty on these parameters may still be critical for the achieve-
ment of the top level requirement and must be properly accounted for.
To this end, we write the closed loop expression of both the two
individual loops and we substitute it into Eq. (6) to obtain an approx-
imation of the closed loop measurement equation

Table 2 Results of v-gap analysis

Neglected parameters 8,
Kyp Kgy 0.0054
hys 0.6

where the standard notation is used for the sensitivity and comple-
mentary sensitivity functions

Spr = (1 + KppI'pp) ™ Tpr = KprI'pe(1 + Kpplpg) ™
Ssus = (1 + KsusTsus) ™
Tsus = KsusTsus(1 + KsysTsus) ™

If structured uncertainties are not to be considered explicitly in the
design, the closed loop individual functions can be shaped via an H,,
loop shaping technique, for example, from the knowledge of the
nominal values of the stiffness parameters and the actuation cross talk
[20]. On the other hand, a design that aims at maximizing the
tolerable parametric uncertainties appearing in the SISO closed
loop functions can be performed by means of the classical D — K
iteration. This approach requires the definition of performance
weights in order to shape the design of the individual controllers
toward the achievement of the requirement in Eq. (7). However, the
definition of appropriate weighting functions is by no means a trivial
task and it is often the result of a tedious trial and error procedure. In
this paper the measurement equation in Eq. (12) is used to break
down the requirements in Eq. (7) into independent requirements on
the closed loop behavior of the drag-free and suspension loops. The
fulfillment of these requirements is a sufficient condition of robust
performance of the overall system. Then a novel control design
technique [12] is used to synthesize optimized performance weights
and controller together into one algorithm in a systematic way. The
synthesis algorithm involves the iterative solution of an optimization
problem aimed at maximizing the size of the performance weights in
certain directions to achieve desired specifications. This optimization
is restricted by the constraint that there exists an internally stabilizing
controller that achieves robust performance with respect to the
maximized weights. The designer is only required to specify the plant
uncertain set and some frequency dependent functions, dubbed
optimization directionalities, that reflect, in a qualitative way, the
desired performance requirements over all frequency. The specif-
ication of the optimization directionality functions is easier than the
direct design of the performance weights and can be easily derived by
the information about the way the different exogenous disturbances
enter in the performance cost in Eq. (12).

IV. Control Synthesis Technique

In this work the optimization based synthesis technique
introduced in [12] is used to design the suspension and drag-free
controllers. In the following, for the sake of completeness, a brief
description of the synthesis method is given. The interested reader
can find a more detailed description in the referenced paper.

First of all, let us define a set of uncertain matrices with a given
structure:

A:={A=diag[l, ®A,,....I, ®A,.I, ®A 4 ql:

A;=ATeR*hi Vie{l,...,g} and A;eCk*k Vie{g+1,...,g+d}}
(13)

®Agirenn],

Ngtd

where

y(s) ~ mpy{frm, + KulSorTor(dsc + mayhislma(=Tsusdrwv — Tsus/Tsusg)) — Torie] + KiglSsusTsusdm — Tsus gl

X

+ hyslrml—Tsusdrm — Tsus/Tsusngl}

usus

¢
12)
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g+d

E niki=r
i=1

A set of uncertain stable transfer function matrices with structure A
can be then defined as

M, = {A(s) € RHo: A(sg) €AV s5€ C||A]lo < 1}
(14)

Most linear time invariant closed loop systems subject to pertur-
bations can be redrawn into the form depicted in Fig. 5a, where I'(s)
is the known part of the plant partitioned consequently with the
interconnection. In Fig. 5a, A(s) € I1, represents a stable pertur-
bation with r inputs and r outputs, whereas K(s) is an internally
stabilizing controller with p inputs and g outputs. The system is
subject to the exogenous disturbances d and the control objective is
measured in terms of the error signals e. The required performances
of the closed loop system are included in the design by means of the
diagonal frequency dependent performance weight

WeW = (diagl[w] w, € RH.}

with i = 1,..., n. The system achieves robust performance in the
presence of uncertainty if

”W]:u(]:I(G! K)’ A)”oo <1 (15)

where F,(-,-) and F,(-,-) are the lower and upper linear fractional
transformations (see [25] for further details). The condition in
Eq. (15) can be rewritten in terms of the supremum of the structured
singular value (1)

swpits| (0 iy ) 5T KGOD | <1 6)

where p, of a complex matrix M is defined as

1
min{o(A): det(l —MA)=0,A € A}

pa(M) = an

and where
A ;= {diag(A,A,): A€ A, A, € C™"}

denotes the total uncertainty structure with respect to which the
structured singular value is computed (see Fig. 5b). However, the
exact computation of this parameter is nonpolynomial hard [26] so
that for common applications upper and lower bounds of w, are
computed. A classical p design problem with given performance
and robustness specifications involves the search for a controller
that minimizes the left-hand side of Eq. (16), that is, a controller that
maximizes the size of the smallest possible uncertainty, A, that
causes the loss of performance of the system. In other cases it may
be desirable to maximize the performance of the system subject to
the condition in Eq. (16). The control synthesis problem may then
be reformulated as [27]

= |

~
F(T(s), K(5))
a) b)

Fig. 5 Generalized block interconnection for synthesis and analysis.

mvaxJ W)

subject to mlcin Sgp MA[((I) W((;a)) )}'I(F(jw), K(jw))] <1

18)

where J(W) is an objective function that captures the performance
preferences of the design and KC is the set of all internally stabilizing
controllers for the system F,(I", K). In this case the optimization
algorithm simultaneously synthesizes the controller and the weight-
ing functions to maximize the closed loop performance of the system
in some sense. A pointwise frequency solution of the optimization
problem in Eq. (18) is proposed in [27] and a similar state space
solution in [28] in the case of purely complex structured uncertainty.

In the following a brief description of the synthesis method
capable to handle both parametric and complex uncertainties is
given, detailing the definition of the objective function, J(W), of the
search space and showing the main steps in which the search
procedure is divided.

A. Objective Function Definition

The objective function in Eq. (18) must be able to capture the
performance preferences of the design that in common practice are
reflected as gain requirements on the closed loop transfer functions.
These gain requirements are usually handled by penalizing each
output of the closed loop system with a weight, w; (jw), whose mag-
nitude reflects the inverse of the desired specification bound. The ob-
jective function in Eq. (18) shall then represent a cumulative measure
across frequency that reflects qualitatively the desired inverse per-
formance weights shape.

Following the work in [27], let [w; , wy] be a synthesis frequency
range and v;(jw) be n given stable minimum phase transfer
functions. Let us define

J(W) = 19)

1
logiown 1
flogmw,_ Z?:l |w; (jw)/v; (jo)[* d(loglow)

The direction of steepest ascent in maximizing the function in
Eq. (19) over any one weight w;(jw) at any one frequency w in the
frequency interval [w;,wy] corresponds to the smallest ratio
|w;(jw)/v;(jw)|. Consequently, the functions v;(jw) are called
optimization directionalities because they can be specified so that
they qualitatively direct the maximization where desired. Therefore
|u;(jw)| should be set at a large value (respectively, small) at fre-
quencies and in channel directions where the magnitude of the
performance weight w;(jw) is required to be large (respectively,
small) to capture the desired performance objectives. Defining an
optimization directionality matrix as

T(jo) = diag(v, (jo), ..., v,(jo))
then (similar to [27]) the cost function in Eq. (18) can be defined as

1

JIW)y=—e
W=,

where

. logiowy . )
X N0, wp) -= X (jo) | 7d(log w)
logjowy,

Note that only the argument of the optimization is of interest.
Therefore the maximization of the cost can be replaced by the
minimization of the reciprocal of J(W) as will be seen in the next
section.

B. Search Space Definition

In every optimization problem a crucial issue is the definition of
the search space. First of all, since u,(M)= pu,(MT), the
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optimization problem in Eq. (18) can be equivalently rewritten in
terms of the dual system

VI‘}E%H YW'If,, o, Subject to
minsup i, [F (T, K) (jeo) " diagll,, W (jo)]] < 1 (20)
o

so that the inverses of the performance weights will appear
in subsequent manipulations independently to form a convex
constraint.

Now, to define an efficient solution algorithm, the robust
performance constraint written in terms of o, will be replaced with
a convex upper bound. Such an upper bound involves the definition
of matrix scalings G and D allowed to vary in sets D and G that
depend on the structure of the perturbation matrix A, that is,

D:={D=diag[D, ®1;,.....D,®I; . Dy &I, ..... Dy s ®I,
0<D;=Dj eCri*ni}
G:={G=diag[G, ®,,...,G,®1; ,0,...,0]: G;=G} e C"*"i}
21
The following lemma from [25] defines an upper bound on the

structured singular value:
Lemma 1 (see [25]): Let M € C™" and A € A. Then

g+17""

< H . . * . _ * _R2 <
na(M) < Delpr?cf;egmén{ﬂ. M*DM + j(GM — M*G) — B°D < 0}
(22)

This result can be reformulated in a more convenient way exploiting
the result from the following lemma.

Lemma 2 (see [12]): Given a complex matrix M € C™", D € D,
G e G, B>0,and y € [0, 1], then

5((D MﬁD - jG) (I + Gz)—%) <y (23)

if and only if
Q(M.G.D.B.y)
[ M DM+ j(GM-M*G)—(By)*D 1-1*G
’_[ V1-v26 -D

where D = D*D € Dand G = BD*GD € G.
By virtue of Lemma 2 an equivalent reformulation of the upper
bound in Eq. (22) is

} =0 24

QWM,G,D,B,1)<0 (25)

Note that by adding the fictitious uncertainty block A, € C™" to
handle robust performance problems, the scaling matrices asso-
ciated to the augmented uncertainty structure A, are diag[D,1,],
D €D and diag[G,0,], G € G, where the last entry in the
D scales has been normalized to unity. The following lemma
provides an alternative upper bound on s [F (T, K)(jw)”
diag(l,, W (jo)]].

Lemma 3 (see [12]): Given a closed loop system F,;(I',K) €
RH,, and performance weights W € W. Then, YV w 3 D, € D,
G,€G,y,€][0,1]and B, > 0, such that

g+d]:

With the result from Lemma 3, and using the aforementioned
upper bound of 1, the optimization problem in Eq. (18) is replaced by
the following one:

; —12
VI"EIEI)EIVHTW I, wy  Such that

Yw3iD,eD, G,e€G and B, € (0,1) satisfying
Q(~F[(Fv K)(ja))Tv diag[Gw’ On]v diag[Dwv In]7 ﬂwv 1)
= diag[or’ /32) (Ww - In)’ Or+n] (27)

When K is held fixed, the search space in Eq. (27) can be
characterized by a set of linear matrix inequality constraints,
uncoupled at each w, and simultaneously quasi convex in D, G,
W,, and B,,. Hence, with K fixed in the inequality constraint, the
minimization of the integral appearing in the cost function in
Eq. (27) is equivalent to the minimization of the integrand on the
continuum of frequencies. Therefore, under these assumptions,
the cost function in Eq. (27) can be decoupled at each w into
I T(jo)W(jw)~'||% = tr(Y,W,), where we define the diagonal
positive matrix

_ Y(o)*T(w)
- w

Y

w

noting that the division by w is necessary to take account of the
logarithmic scale appearing in the cost function. A detailed descrip-
tion of the solution algorithm is given in [12].

V. Design Results

The synthesis technique outlined in the previous sections is here
exploited to design the drag-free and suspension SISO controllers.
First the top level requirement in Eq. (7) is broken down into
specifications on the drag-free and suspension loops, respectively.
Such specifications, given in the MBW, are shown in Table 3 and are
derived from the closed loop measurement relation in Eq. (12) in
which we substitute the worst case combination of parameters.
Although the electrostatic forces directly compromise the accuracy
level of the measurement, the actions exerted by the thruster actuators
are not directly coupled to the measurement equation. Therefore,
when high accuracy free fall is required, the instrument is operated in
pure drag-free mode rather than in accelerometer mode [29]. This
implies that a high bandwidth control is designed for the drag-free
loop, whereas the gain of the suspension controller is reduced in the
MBW. Moreover, as can be clearly seen from Figs. 2 and 3, the
driving external disturbances appearing in Eq. (12) are the inertial
sensor readout noise in the suspension loop and the thruster actuation
noise in the drag-free loop. Therefore, the closed loop transfer
functions related to these contributions in Eq. (12) are shaped directly
in the SISO controllers design. As already pointed out in Sec. 11, the
simplified system is diagonal dominant and therefore the stability of
the individual loops implies the stability of the overall system. This
consideration allows one to tackle the design of the suspension and
drag-free controllers separately once the coupling through /g is
taken into account by properly writing the measurement equation
from which the performance breakdown is derived.

ifandonlyifVw 3D, € D,G, € G, v, €10,1] and 8, > 0, such
that

Q(‘F[ (F7 K) (ja))T’ diag[Ga)’ On]? diag[D(I)7 In]’ ﬂw? V(X))
= diag[ON (:Bwyw)z(ww - In)s 0r+n]
where W, = [W(jw)* W (jw)]~".

Table 3 Specifications on the individual loops

Variable Specification in the MBW

x 3.05 x 10_9[1 + (ﬁ)Z]JLH_z
. 233 % 107°[1 + (-l 1 3
fsus 2.33 10711 + G {LHL)z]xzr«a;jE
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Fig. 8 Final results of the drag-free design procedure.

The inputs to the synthesis algorithm for the drag-free design are
shown in Fig. 6. W, and W, shape ST and T, respectively, and are
automatically designed by the algorithm. The frequency range
between (107> Hz, 10! Hz) has been gridded with 150 points. As
already mentioned above, this is the frequency range relevant for the
system, covering from the inverse of the assumed experiment time to
the controller sampling rate. The optimization directionalities in
input to the drag-free control design are defined according to the
following considerations. The highest source of noise entering in the
drag-free loop is due to the thruster actuation system (see Fig. 2).
Thruster noise appears directly in the measurement equation filtered
by SprI'pr- To achieve the top level requirement in Eq. (7) it is thus
highly desirable to have large attenuation of Sppl'pp in the
measurement band. This requirement is introduced in the synthesis
technique by simply setting a high level of the optimization
directionality corresponding to W, in the MBW. Moreover, ac-
cording to [7], to avoid the generation of command signals that
exceed the capabilities of the FEEP actuator, an upper limit is posed
on the control signal above the FEEP natural frequency. This is
captured by setting high values of the optimization directionality that
corresponds to the W, shape at high frequencies so that large atten-
uation of Tyg is required at frequencies above the MBW. Observe that
the definition of the optimization directionalities presents fewer
difficulties with respect to the direct synthesis of the weights W, and
W, thus supporting the control designer in the choice of meaningful

al [

T ]

a) Suspension controller design setup

performance weights. For instance, the absolute magnitude of
the optimization directionalities is irrelevant but only the shape
and the relative magnitudes are taken into account by the search
algorithm.

To illustrate the behavior of the algorithm as iterations proceed,
consider Fig. 7 which gives plots of intermediate results after the first
and the second iterations. At the beginning of the synthesis procedure
an initial guess controller K|, is designed with standard techniques.
The definition of the initial robustness margin S, depends on the
characteristics of the initial guess controller. In the drag-free control
design the initial guess controller allows one to set the initial
robustness margin to 8, = 0.5. Moreover, the number of iterations
required to reach the limit of performance is set to N = 4 (see [12] for
a detailed definition of K, f). Figure 7a shows inverse magnitude
pointwise plots of the optimal performance weights W;*‘ in output to
the analysis phase. In the Fig. 7b solid line, the structured singular
value of the weighted closed loop system is computed, that
is, wa,(diag(Z,, W, )F (T, Ky)(jw)). Note that it approximately
assumes the constant value of B, over frequency that means that W,
represent the highest achievable performance given the robustness
margin f,. Then the robustness margin is relaxed 8; = B,_,(1 + ¢€)
and suboptimal D, and G,,, scalings are computed. This allows one
to have some more freedom in the approximation error when fitting
the pointwise data. Then the optimal D,, , G,, , and W,, weights are
fitted to build the augmented plant I"py . In Fig. 7b, the dash-dotted
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S
\

Magnitude
5
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b) Optimization directionalities

Fig. 9 Input to the synthesis algorithm for suspension controller design.
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line o (F;(Tpgw, Ko)) is plotted over frequency. The resulting value
is not flat over frequency anymore because of the errors introduced
by the fitting. Then an H,, synthesis technique is exploited to
compute a new suboptimal controller K. In Fig. 7c the maximum
singular value for the augmented closed loop system (solid line) and
the structured singular value of the closed loop system (dash-dotted
line) are displayed. In the regions where the structured singular value
of the closed loop system reaches a value below B, a further im-
provement in performance can be achieved in the subsequent
iteration. More details on the algorithm can be found in [12].

In Fig. 8 the results of the synthesis of the drag-free controller are
presented. In Fig. 8a the pointwise magnitudes of the weights in
output to the synthesis algorithm are shown together with the
nominal closed loop transfer functions of interest. Comparing these
results with the ones shown in Fig. 7a it is possible to conclude that
the algorithm manages to reduce the magnitude of the corresponding
weights in the desired frequencies range as the iterations proceed.
Moreover, from a direct comparison between Fig. 6b and Fig. 8aitis
possible to see how the optimized performance weights look diff-
erent with respect to the optimization directionalities. This shows that
the optimization synthesis technique automatically trades between
performance requirement, robustness and limitations due to plant
dynamics in order to maximize the cost defined in Sec. IV.A. It is
important to highlight here that the design setup displayed in Fig. 6a

— \\/ =1
102 14 i
-
Nominal S
= = = ‘Nominal TT-"
100t —
[0
©
2
= -
8102 s .
= . .
- - . ~
~ - - ~ S
“mw" Phe ~ ~
Ve N ~
- \ A
104 } -7 AN S
// N\ ~..
// N
= \
~ \
\
10-6 ! ! ! ! L
104 107 10-2 10-1 100 101

Frequency (Hz)

a) S and TT ! plots and corresponding performance weights in
output to the synthesis algorithm
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is such that the performance weights multiply ST and 7 rather than §
and T. Therefore, the optimized performance weight W, and the
associated closed loop transfer function have large magnitude before
roll-off because of the large magnitude of I" in the corresponding
frequency range.

In Fig. 8b the magnitude plots of the nominal transfer function
obtained by closing the drag-free loop in Fig. 4b with the designed
drag-free controller are given. The bold line in this plot represents the
requirement on the noise on the x axis obtained by the breakdown
performed at the beginning of the design (see Table 3). In Fig. 8b the
line with bullets marks represents an indication of the worst case
transfer function from the thruster noise to the output of the drag-free
loop (previously identified as a main design driver for the drag-free
loop). This plot can be easily derived from the optimal performance
weights in output to the synthesis algorithm and confirms that the
system achieves the required level of performance even in the worst
case. As a final remark, the designed controller after appropriate
model reduction achieves a value of the SISO gain and phase margins
of 6.12 dB and 35.9 deg, respectively.

The inputs to the synthesis algorithm for the suspension controller
design are shown in Fig. 9. The performance weights W, and W, are
automatically defined by the synthesis algorithm to shape S and
TT'. In particular, the high magnitude of v, (jw) at low frequencies
(below 1 mHz) implies that the optimization algorithm should
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terms of suspension control signal
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Fig. 10 Final results of the suspension design procedure.
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Fig. 11 MIMO closed loop robust performance analysis of the drag-free satellite. ES: electrostatic; RO: readout.

maximize W; at low frequencies. This is necessary to attenuate the
disturbances in input to the suspension loop. On the other hand, the
high magnitude of v, (jw) at high frequencies (above 1 mHz) states
that the optimization problem should maximize as much as possible
W, in the MBW. This will limit the effect of the inertial sensor
readout noise on the suspension control force that couples directly
with the measurement equation. The frequency range between
(1073Hz, 10'Hz) has been gridded with 150 points, the designed
initial guess controller for the suspension loop allowed to set the
initial robustness margin to S, = 0.7. Moreover, the number of
iterations to reach the limit of robustness is set to N = 4.

The results in output to the synthesis algorithm are shown in
Fig. 10. The algorithm converges after five iterations. In Fig. 10a the
pointwise in frequency magnitudes of the inverses W, and W, in
output to the synthesis algorithm are shown together with the nomi-
nal closed loop transfer functions S and TT'~!. The magnitude plot of
each uncertain closed loop sensitivity function falls below the
corresponding weight because robust performance is guaranteed. In
Figs. 10b and 10c the response of the system obtained closing the
suspension loop shown in Fig. 4b with the designed controller is
displayed. In Fig. 10b the closed loop response from input distur-
bance and readout noise to control signal is presented. In this figure it
is possible to see that the worst case transfer function from readout
noise to actuation signal (previously identified as a main design
driver for the suspension loop) clears the performance requirements,
that is, the individual loop achieves the required level of robust
performance. In Fig. 10c the closed loop frequency response from
input disturbance and readout noise to the output ¢ of the suspension
loop is given. In this case the requirements are met with some margin.
Finally, the designed controller after appropriate model reduction
achieves a value of the SISO gain and phase margin of 9.98 dB and
39.7 deg, respectively.

In Fig. 11 the nominal closed loop response (Fig. 11a) and the p
plot (Fig. 11b) of the fully coupled MIMO closed loop system are
presented. These figures show, as expected, that the main perfor-
mance goal in Eq. (7) is robustly achieved with margin.

As a final remark, the fastest poles of the drag-free and attitude
controllers are given in Table 4. These are well below the assumed
sampling frequency and therefore the controllers designed with the
proposed method are suitable for a digital implementation.

VI. Verification with Time Domain Simulation

In this section, controllers designed with the method described in
Secs. III and IV are tested against a more complex dynamical model
describing a drag-free satellite.

To this end, an enhanced version of the drag-free satellite simulator
presented in [30] has been used to assess the performance of the
system by means of time domain simulations. The simulator
integrates the nonlinear set of equations of motion of a drag-free
satellite with physical characteristics consistent with the model
described in Sec. II. In particular, diagonal inertia matrices are con-
sidered for both spacecraft and test mass both assumed to have
approximately a cubic shape. The coupling between the test mass and
the satellite is modeled by means of an uncertain stiftness matrix
defined as follows:

K.»Es

Ko Iy + K, (Es — 1) ]
Ki=| =T Roti—h 28
[ Kypls + Kyg(E3 — I3) (28)

K¢XE3

The numerical values of the additional uncertain parameters K, and
K4y representing the stiffness cross couplings between the transla-
tional and rotational degrees of freedom, respectively, are given in
Table 3.
The parameter /g is again used to model the direct electrostatic
cross coupling between different test mass degrees of freedom.
Command quantization has been included in the model with
actuation resolutions consistent with those defined in Sec. ILB.
Moreover, a FEEP maximum thrust of 150 uN (see [16]) and a
suspension maximum torque of 1.0 x 107! N - m (see [21]) have
been considered in the simulator. Finally, the filters used to describe
the input noises associated with the actuators and the measurement
noises are those given in Figs. 2 and 3 where the assumption on the
disturbance torque due to the FEEP thrusters has been removed.

Table 4 Controllers fastest poles

Controller Fastest pole, Hz
Drag free 0.39
Suspension 0.11

Table 5 Numerical value of additional
stiffness parameters

Parameter Nominal value Uncertainty
K,y 0.02x10¢ & +50%
Ky 0.3 x 1070 Xm +50%
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Fig. 12 PSD of the residual acceleration acting on the test mass.

Additional drag-free and suspension controllers have been
synthesized to control the test mass position and attitude,
respectively, in all 6 degrees of freedom. In addition, an attitude
controller designed with conventional methods has been included in
the loop to assess the performance of the overall system in a scenario
consistent with the one defined in Sec. II. The control strategy
suggested in [9] has been used to integrate the attitude controller and
the drag-free and suspension controllers. According to this strategy,
the test mass attitude is inertially fixed through the attitude controller
and the spacecraft attitude is corrected through the drag-free loop.

The performance of the fully nonlinear system is tested against the
requirement in Eq. (7). To assess the robustness of the system,
a Monte Carlo analysis has been performed by checking the corners
of the uncertain parameter space formed by {K,., K. K.y,
K.,y K4 Kgo, hys}. For each corner point of the parameter space, the
PSD of the residual acceleration acting on the test mass in the x
direction has been computed from a 5 x 10* s batch of time domain
signal sampled at 10 Hz. The results of this computation for the case
in which all the uncertain parameters are 1.5 times their nominal
value (corresponding to a more unstable test mass-spacecraft
coupling) are presented in Fig. 12. From this plot it is possible to see
that the system achieves the required performance with the given
combination of parameters. The same behavior was observed for all
the combinations of parameters tested in the analysis providing
evidence of the robustness of the system.

VII. Conclusions

This work addresses the problem of the design of a robustly
performing decentralized controller for a high accuracy drag-free
satellite with cubic test mass. First, an uncertain design plant set
representative of the most modern drag-free satellites missions has
been defined. The design plant was supposed to be uncertain and a
performance requirement was imposed on the acceleration of the test
mass along one of the two axes. An approximate uncertain plant set
has been found relying upon the v-gap metric and the measurement
equation has been exploited to perform a worst case performance
breakdown to derive requirements on the closed loop transfer
functions of the individual loops. A recently developed iterative
algorithm that performs an optimized tradeoff between achievable
performance and limitations due to uncertainty or plant dynamics has
been then considered to independently design the controller of each
loop. The resulting design technique has shown to be easy and allows
one to properly account for the uncertainty appearing in both the
design plant and in the measurement equation while retaining the
decentralized structure of the controller. To finally prove the results
presented in this work, controllers designed with the proposed
technique have been tested in a more realistic nonlinear simulation
environment.
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